skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "White, B D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We characterize the properties of Ce1−xYbxRhIn5 single crystals with 0  x  1 using measurements of powder x-ray diffraction, energy dispersive x-ray spectroscopy, electrical resistivity, magnetic susceptibility, specific heat, x-ray absorption near edge structure (XANES), and neutron diffraction. The Yb valence vYb, calculated from the magnetic susceptibility and measured using XANES, decreases from 3+ at x = 0 to ∼2.1+ at xact = 0.2, where xact is the measured Yb concentration. A transition from incommensurate to commensurate antiferromagnetism is observed in neutron diffraction measurements along Q = (0.5, 0.5, l) between 0.2  xact  0.27; this narrative is supported by specific-heat measurements in which a second robust feature appears at a temperature TI (TI < TN) for the same concentration range. Magnetic susceptibility measurements also reveal features which provide additional evidence of magnetic ordering. The results of this study suggest that the evolution of the Yb valence plays a critical role in tuning the magnetic ground state of Ce1−xYbxRhIn5. 
    more » « less